Accelerating Hash Aggregate for Big Data Analytics

Anirban Nag
Huawei Zurich Research Center
Email: anirban.nag@huawei.com

Abstract—Big Data Analytics is a crucial workload for hy-
perscale service providers. On profiling analytics workload in
modern ARM server systems, we see that 23% of the execution
time is spent on hash aggregate operation. Thus, accelerating
this operation can improve overall throughput of the system in
processing analytical queries. In this paper, we first show that
hash aggregate is a memory bound workload with data dependent
memory accesses that stall the core and do not generate enough
memory level parallelism (MLP). We introduce an accelerator
with two novel techniques: (i) dataflow execution with pipeline
of stages decoupled by hardware queues that allow producers (of
memory accesses) to run ahead of consumers, (ii) a hierarchical
locking mechanism that allow concurrent accesses to shared data
structure (hash table) at high throughput. These innovations
enable high memory bandwidth utilization which in turn leads
to on average 52x speedup over a typical ARM server core.

I. INTRODUCTION

With the end of Dennard scaling it is possible to shrink a
transistor’s size but not its power consumption. Accelerators
have been widely adopted to circumvent this constraint. Die
area that would be otherwise underused is instead invested in
tailored, resource-efficient implementations of critical applica-
tions. Such accelerators have been successfully deployed for a
variety of workloads including machine learning training and
inference, web search, and network processing.

Data analytics is a key workload in server systems for per-
forming business analytics. Analytics provide business insights
to companies which helps them in making future decisions.
Analytics services is a business sector with multi-billion USD
market size [1]. Any improvement in throughput of analytical
query processing can allow hyperscalers to process more
volume (scale) with less resources. Companies like Intel and
Oracle have proposed accelerators for data analytics (Intel In-
Memory Analytics Accelerator [2] (IAA) and Oracle Data An-
alytics Accelerator [3] (DAX)) but they only support primitive
operations that are less useful in production environment. In
this paper, we highlight the importance of accelerating hash
aggregate using custom logic to improve the throughput of
data analytics.

II. BACKGROUND
A. Big Data Analytics

Businesses typically store their data in Online Transaction
Processing (OLTP) databases, which is in row format (all
fields of a particular transaction are stored consecutively). This
data is then transformed into columnar format (each field’s
data items are store consecutively) to enable faster analytical
algorithms (and vector processing). A database consists of

many tables, each comprising of multiple fields. An analytical
query comprises of many different operations performed on
the data, such as scan, filter, hash join, hash aggregate, sort,
shuffle, etc.

The pie chart in Figure 1 shows the percentage of execution
time spent on different operators (using Spark as the analytics
software stack, running TPC-DS benchmark queries at scale
factor 3000). The pie chart shows that a significant portion of
the execution time (23%) is spent on hash aggregate operation

QO

Fig. 1. Breakdown of hot functions in big data analytics.

= Non-Exec
m Shuffle
HashAgg

u Sort

™ Scan
SortMergeloin

m Filter

= HashJoin

m Others

B. Hash Aggregation

Aggregation (a.k.a group-by) involves scanning each row of
a table and calculating aggregation statistics (sum, avg, min,
max, etc) from the value column for each unique group in
the group column. Such a task may involve one (or more)
column(s) as input group, and one (or more) column(s) for
aggregation value. To compute the aggregation, a hash based
approach is preferred (over sorting the entire table) because
it involves scanning the table only once. For each row in the
table, the group column is hashed to find its corresponding
hash table index. If there is an existing entry in the hash bucket
that matches with the input group, the values are aggregated,
else a new entry is added to the hash bucket. Hash collisions
(two groups mapping to the same hash index) are resolved by
chaining entries within a hash bucket, with allocations for new
entries being obtained from an "Extended Table".

Figure 2 shows the hash aggregation process for an example
SQL query. The query finds the aggregate number of units sold
per unique salesman from the Sales table. When processing
the last row (Salesman: Tom, Units: 1), the group column
(Tom) is first hashed, which points to hash index 1. In that
hash bucket, none of the existing entries match with group
name "Tom", which is why a new entry is created (allocating
an entry from the Extended Table) and chained to the base
entry using a pointer.

SQL: SELECT Salesman, Sum(Units) FROM Sales GROUP BY Salesman

Base Hash Table Extended
Salesman i S Val P |
Tohn Hash Function Group [Value| Ptr roup | value r
/, Tom 1 Null
% Sam | Hash(Tom) % 4 |M John | 4 | €0
o John
7 Tc
< o.m Sam 3 | Null
5 Units
g 2 Salesman Units
% 3 Input Row 5 John 4
© 2 [salesman [Units | = Sam 3
1 [Tom [1 | O [Tom 1

Fig. 2. Hash aggregation example query and execution steps.

C. Accelerator Ecosystem

Accelerators in server systems are generally integrated in
the 1O die. This is because the IOMMU unit [4] offer virtual
memory functions (such as Address Translation Service and
Page Request Service), which allow accelerators to work on
virtual memory space without interrupting the calling core.
Typically, an accelerator is invoked asynchronously (using for
example co-routines) such that the core is not idle and can
perform independent work. This requires software modifica-
tions, which can be easily obfuscated from the end user using
analytics software engines (programmed by experts) provided
by big tech companies (Velox [5] by Meta, OmniRuntime [6]
by Huawei). Invocation is done using library APIs provided
by the CPU vendor. Device drivers mmap hardware job
queues such that a core can submit jobs. In ARM ecosystem,
cores can atomically write to the job queue using ST64BV
instruction and get a response back about success or failure
in submitting the job. A job submitted to the accelerator sets
up the different finite state machines (FSMs) by configuring
the control registers. A DMA engine within the accelerator can
directly access the memory for input, output, and intermediate
data. This ecosystem across multiple stacks is depicted in
Figure 3.

App program uses async semantics like C++ coroutines

Application ‘ to invoke asynchronous hash aggregate operation.

Library with API to configure and offload hash aggregate
operations to the accelerator.

l

User space [}
Device driver to mmap and get access to job queues. }

Kernel space

(one time)
UArch [Jobs submitted with ARM atomic ST64BV instructions.
Fig. 3. Hardware/software interface to integrate accelerator in the ARM

ecosystem.

III. THE HASH AGGREGATE ACCELERATOR
A. Workload Characterization

To guide us with an accelerator architecture, we construct a
benchmark by isolating different hash aggregate kernels from

the TPC-DS benchmark (with scale factor 500) with varying
characteristics (different output groups cardinality, different
input data types, number of aggregates per query, etc). In
order to illustrate the key bottlenecks, consider a naive (first
pass) accelerator with multiple hardware threads to increase
the throughput. Each thread is responsible for serving one
input row at a time, fetching hash table entry from the memory
if required, performing the aggregation, storing the result in
the cache, and evicting (and writing back) hash table entries
from the cache if necessary. Each hardware thread is equipped
with its own operand registers and ALUs.

Figure 4 shows the breakdown of execution time (obtained
from a cycle-accurate simulator) for different hash aggregate
kernels (sorted by their throughput). We see that most of the
time the threads are waiting on memory accesses (reads: yel-
low, writes: blue) or idle (orange) because of load imbalance.
This shows that hash aggregate is a memory-bound workload
due to data dependent memory accesses to the hash table,
whose performance is proportional to utilization of the avail-
able memory bandwidth. To achieve high throughput, such an
architecture would need large number of threads to increase
memory level parallelism (MLP). This model is not silicon (or
power) efficient because precious silicon resources (registers)
are wasted waiting on memory accesses. The architecture also
needs large MUXes to share cache read/write ports across large
number of threads.

120

0y 1
60‘

40

|
o |

.
® O
o

Percentage Exec Time

O R N WA U O N ®
Throughput (GB/s)

qls

ql8 e
e3 g
el mfm
e4
e2
el E—
e2 ==
e3 m—
] m—
e2 —
e3
e2
e4
el
e5
4 m—
€6 m—
el -
el mm
el w—
el mmm
e2 mmmm
e2 mmm—
e3 mm—
ql

sql65-casel

sql78-case2
ca

sql65-case3
sql78-casel

[dle Ready Read mmmm Compare M Agg NN \Write emm=Thrput (GB/s)

Fig. 4. Breakdown of time spent by different stages in a suite of hash
aggregation kernels from TPC-DS.

B. Key Ideas

In order to design a silicon (and power) efficient architec-
ture, we propose a novel dataflow architecture. In this model,
application tasks are structured as a pipeline of stages de-
coupled by queues. Hardware queues hide latency effectively
and allow scaling MLP for a memory-bound workload by
allowing producer stages to run far ahead of consumers [7].
Instead of waiting on memory accesses occupying bulky
registers, execution contexts (for processing input rows) wait
on memory accesses being queued in area efficient hard queues
(implemented in SRAM). Queues allow scaling MLP with
fewer parallel execution context, which in turn enables sili-
con efficient implementation (smaller MUXes, fewer operand
registers).

1 bit lock per i

n-memory

Perform \

Input 1 bit hash index (Implemented
Row lock as Bloom Filter) aggregation (D) In-
4-way cache 0[] and issue Memory
er set —{ q
(a) \|/ (1) Hash P! 1] store request, HT Write
and getlock| o 0 H " Queue
on cache set, 1 1 | Compare Issue store l
— (4) Generate :[[l]] =l request. :[l]]]
(2) Compare Evictions (B) In- (3) Hash | [request for in- (©) In-
(A) all tags, RMW . Memory HT| andget | [] memory hash Memory X Get next address
Cache on hit, insert El Ready lock onin-| || table node. HT Read and generate
Ready on miss, evict | 1K 1K Queue memory | — Queue read request.
Queue if required HT index) H
Release lock on e
SRAM write Release lock on -
64K memory write Interface
(b) —_— — — — DDR Main Memory
Staging Queues (SRAM Banks) Associative Cache
Stage FSMs % (A) Cache Ready Queue (SRAM Banks)
(1) Hash & Lock § E [Inp_GAT| MD | Lock | Cache Index ;g o||lo Input column O
w =3 >
Cache Index 5 Inp_GAT| MD | Lock Lock g 3|3 Tyt @l 4
==
() A_ggregate & k] (B) In-Memory HT Ready Queue Tag Array IR Input column 2
Write Cache x 3> Sle||El] @
] Evict_GAT| MD | Lock -5 © % 3 S
(3) Hash & Lock || | |~ < Evict_GAT| MD | Lock CL T 11 % s 8|5
In-Memory Hash al ol|lell8]|=E In-Memory hash
Table Index G| (C) In-Memory HT Read Queue Data Array FHIETHIE table
£3 CL T =(°]=]] <
(4) Read In- & 3| |[Evict_GAT| Out_GAT [MD [Rdy | P *
Memory Hash § | Evict_GAT| Out_GAT | MD | Rdy | ,—'—|—|—‘
Node = T o Output group
(5) Aggregate & o« % ey rite Queue In-Memory HT Output aggregate
Write to In- = E [Out_GAT] MD [Done | Index Lock Config
| Memory Table S m (Bloom Filter) registers
Fig. 5. (a) Hash aggregation execution flow depicted as a pipeline of stages (in blue) decoupled by hardware queues (in orange). Execution also uses

hierarchical locks (in pink) to allow concurrent accesses to the hash table. (b)

Figure 5(a) depicts the dataflow execution of hash aggrega-
tion. The execution comprises of multiple stages (blue boxes)
set-up as a pipeline. Each stage is implemented as finite state
machines (FSMs). The stages are decoupled using hardware
queues (orange boxes). Each queue has a corresponding sched-
uler (First In First Ready (FIFR) or First In Round Robin
(FIRR) that schedules items from the queue if available. All
the stages run in parallel, getting an item from its input queue
if possible, processing the item, and then either sending the
item (or another item as part of cache evictions) to the output
queue (if operation was successful) or keeping the item in its
input queue to try again later. There are multiple copies of
the pipeline (stacked blue boxes) to improve parallelism. In
order to improve temporal locality of frequently encountered
groups from the hash table, a set-associative cache is used
with LRU/LFU eviction policy.

To enable concurrent accesses to the hash table without any
correctness issues, we introduce a novel hierarchical locking
mechanism (pink boxes). This includes a first level lock for
cache accesses (1 bit lock per set) and a second level lock for
each in-memory hash table index. Since the in-memory hash
table is large, 1-bit lock per hash index can per prohibitively
large in terms of silicon area. To reduce area overhead, a
bloom filter lock is be used. Bloom filter is an approximate
data structure that can have false negatives. The bloom filter
may incorrectly classify an index as locked, which may not
be performance optimal but it does not affect correctness.
The bloom filter is designed as an array of counters, where
insertion of an item (to get lock) leads to incrementing a set

Architecture block diagram of the hash aggregate accelerator .

of counters, and evicting the same item (to release lock) leads
to decrementing the same set of counters.

C. Architecture

Figure 5(b) shows the architecture block diagram of the
accelerator. The pipeline stage FSMs and hardware queues are
colored and numbered the same way as in Figure 5(a) (blue
boxes (1-5) and orange boxes (A-D) respectively). Next we
walk through the hash aggregation workflow using Figure 5
as reference.

A "Column to Row" module is used to fetch input data
stored in columnar format and convert it to row format to be
processed by the accelerator. The input row is then pushed
to the "Cache Ready Queue" (Queue-A). An FIRR scheduler
is used (for simplicity and fairness) to schedule a request
to FSM-1. The "Hash & Lock Cache Index" stage (FSM-1)
hashes the group column of an input row to determine the
cache set and then tries to obtain a lock for the set. This is
required to avoid race condition of multiple FSM-2 modifying
the same cache-line. If a lock is obtained, the input row is
forwarded to FSM-2, else it is enqueued back in Queue-A. The
"Aggregate & Write Cache" stage (FSM-2) compares cache
tags to find the matching entry from the hash table and does
one of the following: (i) aggregate and writeback on hit, (ii)
insert on miss, and (iii) evict an entry if no invalid entry is
found in the set. Upon writeback, the lock bit is reset. The
evicted entry is pushed to the "In-Memory HT Ready Queue"
(Queue-B), which uses an FIRR scheduling to feed FSM-3.

Queue-B stores entries evicted from the cache (waiting to
get a lock) that needs to be merged with entries in the in-

memory hash table. The "Hash & Lock In-Memory Hash Table
Index" stage (FSM-3) hashes the group column of an evicted
entry to find the corresponding hash table index and then tries
to obtain a lock for that index using the bloom filter. Again,
locking is essential to avoid race condition of multiple FSM-
5 modifying the same hash index. If lock was successfully
obtained, the entry is forwarded to FSM-4, else it is enqueued
back in Queue-B. The "Read In-Memory Hash Node" stage
(FSM-4) generates a read request (from memory) to read the
base entry of a hash table index. The request is enqueued in
the "In-Memory HT Read Queue" (Queue-C). Whenever the
corresponding memory response is back, the request is ready
to be scheduled (using FIFR scheduler) to FSM-5 for further
processing. The "Aggregate & Write to In-Memory Table"
stage (FSM-5) compares the group column of an evicted entry
with that of the hash table entry and does the following: (i) if
they are the same, aggregate and push a writeback request to
Queue-D, (ii) if they are different, generate read request for
the next hash table entry using the pointer chain and enqueue
the request in Queue-C, (iii) if no match was found and the
hash table entry is last in the chain, insert a new entry in the
chain by pushing a writeback request to Queue-D. The "In-
Memory HT Write Queue" (Queue-D) stores write requests to
the hash table and marks them as complete whenever a write
response is back (using FIFR scheduler).

When all the input rows have been processed and the
pipeline is empty (all queues are empty), the in-memory
hash table is read from memory and converted to columnar
format using to the "Row to Column" module. The number
of processing threads, the number of entries in each queue,
the number of cache sets, and the number of entries in the
in-memory hash table are configured based on the size of an
input row (power-of-2 multiple of 32B input rows).

IV. RESULTS

We developed an in-house cycle accurate simulator for
the accelerator, taking into account DDR4 memory latency
and bandwidth and also modeling the AXI interface. For our
baseline, we use a typical ARM based server system, run
multi-threaded parallel implementation of hash aggregate, and
report normalized speedup over a single ARM core. Figure 6
plots the performance improvement using previously intro-
duced hash aggregate micro-kernels from TPC-DS benchmark
suite. The accelerator provides 26x geomean speedup (52x
iso-area speedup), and maximum up to 135x speedup. The
speedup is more pronounced for kernels with high output
group cardinality. This is because for these cases, the hash
table is large enough to not fit in the cache, resulting in
many memory accesses that stall the CPU core. On the other
hand, our accelerator is well suited in generating high MLP
and maximizing the memory bandwidth utilization for cache
unfriendly aggregation kernels.

V. CONCLUSION

In this paper, we first highlight the importance of accel-
erating hash aggregate to improve the performance of big

Speedup over an ARM CPU core
AN

N -]

o 8 58 83 8 8 8

] I

e3 I

] —

) E—

o3 EE—

ol N

o5 m—

€6

] EE—

o] —

) I

3 IE—

o/ e—

o] E—

3 mm—

e]

2

ef I

e] T

c2 —
c2 —

e2 ==
ed |
e2 =
e3 1
ql5 =
q18 wem
ql =

5ql67-case]l m——

sqlo1
sqlo1
sqlo1
qlo1
23a
23a
23a
23a
23a
3a
47
47
51
51
51
51
sql22-case1 ==
Geomean mm—

sql
sql
sql
sql
sql
sql
sq
sq
sq
sq
sq
sq
sq
sq
sq
sq
sq
sq
sq
sq
sq

Fig. 6. Speedup in throughput of the accelerator over a typical server-based
ARM core for a suite of hash aggregate kernels.

data analytics, a key workload across hyperscale services
in data-centers. We show that hash aggregate is primarily
memory bound and performance is dependent on efficient
memory bandwidth utilization. Thus, we introduce a dataflow
architecture with pipeline of stages decoupled by hardware
queues. Hardware queues provide a silicon efficient mecha-
nism to allow producers of memory accesses to run ahead of
consumers, thereby improving memory level parallelism. We
also introduce a novel hierarhical locking mechanism to allow
concurrent accesses to shared data-structure (hash table) at
high throughput. The accelerator is 52 x more performant than
a typical ARM server core (iso-area). We also showcase the in-
tegration of such an accelerator in the ARM ecosystem across
multiple layers of the stack. Future work includes adding
support for more analytics operators (hash join, scan, filter,
sort, etc) and supporting offloading a pipeline of operators.

REFERENCES
[1] S. Insider, “Big data analytics market to reach usd
842.6 billion by 2032 amidst rising demand for advanced

data solutions.” [Online]. Available: https://finance.yahoo.com/news/
big-data-analytics-market-reach- 130000382.html

[2] Y. Yuan, R. Wang, N. Ranganathan, N. Rao, S. Kumar, P. Lantz,
V. Sanjeepan, J. Cabrera, A. Kwatra, R. Sankaran et al., “Intel accel-
erators ecosystem: An soc-oriented perspective: Industry product,” in
2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2024, pp. 848-862.

[3] K. Aingaran, S. Jairath, and D. Lutz, “Software in silicon in the oracle

sparc m7 processor,” in 2016 IEEE Hot Chips 28 Symposium (HCS).

IEEE, 2016, pp. 1-31.

N. Amit, M. Ben-Yehuda, and B.-A. Yassour, “lommu: Strategies for

mitigating the iotlb bottleneck,” in International Symposium on Computer

Architecture. Springer, 2010, pp. 256-274.

[S] P. Pedreira, O. Erling, M. Basmanova, K. Wilfong, L. Sakka, K. Pai,
W. He, and B. Chattopadhyay, “Velox: meta’s unified execution engine,”
Proceedings of the VLDB Endowment, vol. 15, no. 12, pp. 3372-3384,
2022.

[6] Huawei, “Omniruntime overview.” [Online]. Available:

https://www.hikunpeng.com/document/detail/en/kunpengboostkithistory/

240RC2/bds/kunpengbds_omniruntime_20_0002.html

J. E. Smith, “Decoupled access/execute computer architectures,” ACM

SIGARCH Computer Architecture News, vol. 10, no. 3, pp. 112-119,

1982.

[4

=

[7

—

